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Abstract 
 
In classification of traits, it is observed that the plant traits such as pods per plant, pod length and biological yield 
per plant have positive contribution towards mash grain yield. Three regression procedures i.e. best subset 
regression, principal component regression and ridge regression were tried as in the first phase and for pod length, 
approximately same positive quantitative effect was observed towards mash grain yield for all three predictions 
models. Remaining mash plant traits contribute negatively towards mash grain yield. Also on the basis of criterion 
of goodness of fit, it was observed that best subset regression model is best and stable as compared to principal 
component and ridge regression prediction models, both on the basis of original data and simulation procedure. 
A simulation procedure adopted to test the reliability of the results by generating random samples from normal (0,1) 
exponential (1) and uniform (0,1) distributions revealed that estimated effect for pod length for uniform (0,1) 
distribution tends to very close to original results as compared to other two distributions.  
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INTRODUCTION 
 
Achievement of self-sufficiency in agricultural 
production is an important step towards economic 
growth of Pakistan. Mashbean (Vagna mungo), is a rich 
source of quality plant proteins and an important crop of 
Pakistan. 
Donachie and Haswell (1999), Wentzell and Andrews 
(1999) described multivariate calibration for the 
determination of trace metals in water matrices. 
Multivariate calibration models were constructed using 
multiple linear regression (MLR), principal components 
regression (PCR) and partial least squares (PLS) 
methods to identify which technique offers the better 
predictions for unknown sample. Finally, the calibration 
model constructed using PLS was found to provide the 
most accurate predictions for the unknown samples. 
Guler et al (2001) determined relationships between 
yield and yield components. 
This study is initiated to provide comparison of different 
prediction models such as best subset regression, 
principal component regression and ridge regression 
based on original data and simulation data. Also to 
observe the effect of reference prior (based on 
experience of mash experts) on the estimated effects and 
its standard error of fixed trait on mash grain yield. 
 

MATERIALS AND METHODS 
 

Mash data were obtained form Plant Genetic Research 
Institute (PGRI) at National Agricultural Research 
Center (NARC) Islamabad. Data consisted of 37 pure 
lines of mash arranged in randomized complete block 
design (RCBD) with three replications. Eleven different 

traits including grain yield (Y) and morphological traits 
such as plant height (X1), days to flowering (X2), days 
to fist pod maturity (X3), days to 90% maturity (X4), 
branches per plant (X5), pods per plant (X6), pods length 
(X7), seeds per pods (X8), 100 - seed weight (X9) and 
biological yield per plant (X10), were measured in the 
data set. 
The breeders are interested to obtain different prediction 
models for predicting mash grain yield (Y) on the basis 
of different fixed mash plant traits (X’s) and the 
statisticians help in recommending models with respect 
to stability by simulation procedure. The three different 
regression procedures such as best subset, principal 
component and ridge regression are discussed as under. 
 
Best Subset Regression 
Whenever the pool of potential X variables is not very 
small, it is highly desirable that the investigator be able 
to concentrate on the limited number of regression 
models which are the “best” one according to a 
specified criterion. The limited might consist of the 
“best K=5 or 10 (say)” subsets according to the criterion 
employed so that the investigator can carefully choose 
the final model. 
There now exist excellent computer algorithms for 
selecting best subsets of predictor variables in 
regression. A popular one is that given by Furnival and 
Wilson (1974), which computes only a fraction of 
possible regressions in determining the “best k” subsets. 
Three criteria such as R2

p, MSEp or R2
adj and Mallows 

Cp may be applied for determining these “best K” 
subsets. 
In addition to coefficient of multiple determination R2

p 
and MSEp or R2

adj, Mallows Cp statistics has gained 
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popularity in recent years, Mallows (1973). This has the 
form: 

)1.2()2(2 Pn
S

SSE
C P

P −−=  

Where SSEp is the Error sum of squares from the model 
containing p parameters (p is the number of parameter 
in the model including βo). The “Best” is chosen after 
inspecting the Cp plot. We would look for a regression 
with a low Cp value about equal to P. When the choice 
is not clear-cut, it is a matter of personal judgment. 
 
Principal Component Regression 
In the development of model, the one of the difficulties 
that we sometimes encounter is the presence of highly 
inter-correlated predictor variables. A procedure, which 
analyzes the correlation structure in detail is principal 
component regression and is being extensively used 
John et al. (1987). 
In the context of selection of best prediction model, we 
use the notation “centered” and scaled X matrix which 
is called “Z”. Then applying principal component 
analysis on correlation matrix ZTZ, the jth principal 
component is as: 
 

)2.2(1)1(...332211 −−++++= pZjpZjZjZjjW γγγγ  
 
Thus, the procedure creates a set of artificial variables; 
Wj’s via a linear transformation, as in (2.2) in such a 
way that the W vectors are orthogonal to each other. 
Finally, a prediction model for Y as a function of 
selected Wj’s can be obtained by regressing dependent 
variable Y on some or all of the principal components 
scores as: 

 

 )3.2(1010...3 +322110 Y WWWW βββββ ++++=

Once the fitted equation is obtained in terms of the 
selected Wj’s, it can be transformed back into a function 
of the original predictor variables. 
 
Ridge Regression 
Ordinary least squares (OLS) provides less precise 
estimates of the regression coefficients when applied to 
the non-orthogonal data. Ridge regression is one of the 
several methods that has been proposed by Hoerl et al. 
(1975) to remedy problem of non-orthogonality 
(multicolinearity), by modifying the method of least 
square to allow biased estimators of the regression 
coefficient but more precise (less standard error of the 
estimates) than unbiased estimates. The ridge regression 
coefficients bR can be estimated as: 
 

)4.2(*)*( YX
R

XX rbICr =+  
 
Where rXX is the (p-1) x (p-1) matrix of pair wise 
correlation between predictors, rYX is a (p-1) x 1 vector 
of correlation between dependent and each predictor 

and constant C reflects the amount of bias in the 
estimators usually varies from 0 and 1. 
 
The Bayesian approach  
To observe the effect of reference prior (non-
informative prior) on the precision of the estimated 
effect of fixed trait on response variable, Bayesian 
regression approach with both sample and reference 
prior is used. The simple linear regression model of 
response (mash grain yield Y) on any more effective 
fixed trait (Xj) is given as: 
 

ijXjiY εββ ++= 0  
Before considering reference prior i.e. c < βj < d, it is 
useful to obtain the posterior distribution for βj with 
complete uncertainty about reference prior under the 
assumption of known error variance σ2 and it is obvious 
that: 
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Now instead of treating bj as a random variable and βj as 
fixed, we treat bj as fixed and βj as random variable. So 
the probability distribution for βj that will express 
uncertainty about βj after the sample has been observed 
is given as: 
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So, f (βj|y) is an expression of uncertainty about βj after 
the sample information has been observed and range of 
density f (βj|y) will remain same as f (βj). 
 

Including reference prior about regression 
coefficient 

The reference prior inequality about regression 
coefficient is of the form c ≤ βj ≤ d, as used by Geweke 
(1986), Griffiths (1988) and Griffiths et al. (1988), 
where “c” and “d” are the limits that are specified by the 
expert prior to sample. As it is only an idea but we are 
uncertain where within interval (c, d), βj might lie. Then 
in such case a probability density function that suggests 
that all values between c and d are equally likely is the 
uniform probability distribution given as: 
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The next question is how prior density function like 
(2.7) changes the posterior distribution for βj. As our 
prior density function f (βj) attaches zero probability to 
the value of βj outside the range (c, d), so the posterior 
distribution includes this information and the additional 
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information provided by the sample, must also attach 
zero probability to the value outside the range (c, d). 
 
 
Point estimation of βj

To choose a single point estimate for βj we have to 
minimize the expected symmetric quadratic loss 
function. 
 

jjjjjjjj dyfbcbcEbLE ∫ −=−= βββββ )|()(])([)],([ 22  

 
Here βj is as random variable and f (βj| y) as its 
probability density function. When the loss function is 
quadratic, the point estimate for an unknown parameter 
would be the mean of the posterior distribution, which 
also minimizes the expected loss. 

∫=
d
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Simulation procedure 
In any kind of research work, it is good practice to test 
the reliability of recommended results by simulation 
procedure. Here simulation of prediction model and 
Bayesian approach with reference prior is made by 
Minitab statistical package. To obtain random samples 
of response variable, the steps of simulation procedure 
are 
• In the first step we generate samples of random 

vectors of residuals each consists of 37 
observations from normal distribution with mean 
zero and unit variance. 

 
 

• With the assumption of known variance σ2, the 
random residuals are converted so that εi ~ N (0, 
σ2). 

• The random mash grain yield can be obtained by 
adding fitted mash yield on original data and 
random residuals with zero mean and σ2 variance, 
obtained in preceding step. 

All the methods discussed under section 2 are applied 
on the randomly generated data and results are 
discussed below. 
 

RESULTS AND DISCUSSION 

Best subset, ridge and principal component 
regression models 
Three prediction model, based on best subset, principal 
component and ridge regression, are developed for 
predicting mash grain yield on the basis of different 
physical and yield related traits which are as under: 
Best subset regression based on three different criteria 
such as CP Mallow's statistics, R2

P and MSEP is given as

 

)1.3(X 0.122  X 3.27  
0.118X  X 0.0858 - X 0.0345  - X 0.0436  -  9.63 -   yieldGrain 
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With coefficient of multiple determination, R2 = 94.10% 
and Adjusted coefficient of multiple determination R2 

adj 
= 92.90%. Also the unexplained variation becomes 
35.285.  
 

Principal component regression model based on first 5 
principal components contributing 87% of total 
variation present in the data is given as: 
 

 

)2.3(X 0.1048 0.2230X X4418.1X 1.6216 ....
X 0.0504 X 0.1746 X 0.0252 - X 0.0216-X 0.0215 - 12.9753-  yieldGrain 

10987
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+++++
++=

 
 
Which is the final Principal component regression 
model for predicting mash grain yield, free from 
multicollinearity effect and any extra ordinary small 
estimate, with coefficient of multiple determination R2 = 
86.84% and adjusted coefficient of multiple 
determination R2

adj = 81.79%. 
 

 
 
Ridge regression model observed from ridge trace and 
method due to Hoerl et al. (1975) with biasing constant 
C=0.024 is as: 
 
  
 
 

)3.3(X 0.1170 0.3337X 0.1217X X 3.2392 .....
X 0.1114 X 0.0634 - X 0.0614 - X 0.0548  X 0.0424 - 12.01-  yieldGrain 

10987

65421

+++++
++=
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Which is the final Ridge regression model for predicting 
mash grain yield, free from multicollinearity effect and 
any extra ordinary small estimate, with coefficient of 
multiple determination R2 = 94.38% and adjusted 
coefficient of multiple determination R2 

adj = 92.22%. It 
is clear from above measures of goodness of fit that 
there is a close agreement between statistics of goodness 
of fit for ridge regression and subset regression and 
better than statistics obtained from principal component 
regression. But we prefer the best subset regression 
model for predicting mash grain yield because of having 
fewer numbers of regressors. The stability of prediction 
model with respect to future prediction was also tested 
and best subset regression model was found most stable 
and better for future prediction. In this study it was also 
observed that the outlying observation w.r.t. response 
must be used with great care because the stability of the 
model w.r.t. future prediction is seriously damaged by 
outlying observation. It is clear from the above model 
all the plant traits except pods/plant (X6), pod length 
(X7) and biological yield/plant (X10) have negative 
contribution towards mash yield. Positive and 
approximately same quantitative contribution of pod 
length (X7) is observed towards mash yield for all above 
three prediction models. So we can safely recommend 
the mash breeders that any mash genotype having more 
pod length as compared to the others genotypes 
contributes more toward mash yield. Above three 
prediction models not only provide the breeders a way 
for predicting yield of any variety on the basis of 
physical and yield traits of mash plant also provide an 
idea about the traits which are contributing positively or 
negatively towards mash yield. 
 
Simulation results 
It is very important to test the stability and reliability of 
the previously developed and recommended models 
(given in section 3.1) by simulation. About 3000 
random samples of mash grain yield each consists of 37 
observations (genotypes) were generated from normal 
(0, 1) and exponential (1) distributions and then 
transformed into residuals with zero mean with 1.20 
known variance. The fitted values for each model, 
obtained by substituting original fixed traits, plus 
randomly generated residuals provided us random mash 
grain yield.  
To compare the stability and precision of regression 
estimates obtained from three-prediction models, about 
3000 times’ regression procedures were performed and 
vectors of estimates were stored. All the procedure 
including random sample generation, performing 
regression analysis and storing their estimates were 
done through a program written in Minitab 11 
(statistical package). Estimated parameter by three 
different regression methods on original data and  
 

randomly generated data by both normal (0, 1) and 
exponential (1) distribution are presented in Table-3.1. 
The estimated coefficients and their standard errors 
under randomly generated normal and exponential data 
were obtained by averaging all vectors of estimates and 
square root of diagonal elements of variance-covariance 
matrix of values for each estimate respectively. In 
Table-3.1, BSR, RR and PCR stand for best subset 
regression, ridge regression and principal component 
regression respectively. In the Table-3.1 it is quite clear 
that the estimated parameters by best subset regression 
(BSR), ridge regression (RR) and principal component 
regression (PCR) from original data are very close to 
the estimates obtained from randomly generated data 
from normal and exponential distribution. However the 
standard errors of the estimates from best subset 
regression (BSR) are less as compared to the ridge 
regression and principal component regression in both 
data sets under normal (0,1) and exponential (1) 
distributions. It means that the estimates obtained from 
best subset regression (BSR) are more precise and stable 
than estimates from ridge regression (RR) and principal 
component regression (PCR). So we conclude that best 
subset regression model is more stable and reliable for 
predicting mash grain yield. Our recommendation about 
best subset regression in simulation is same as 
recommendation made previously on the original data. 
 
Bayesian approach  
As we observed that only the mash plant trait pod length 
(X7) contributed more effectively and positively towards 
mash grain yield (Y). Now using Bayesian regression 
with reference prior (prior non-sample information). 
Before starting Bayesian approach it is important to 
discuss the following two features. 
1. Reference prior (non-informative prior) information 

about regression parameter i.e. 4.5.< < 7β  0 is 
based on previous data and suggested by mash 
breeders. 

2. We assumed that σ2 is known, and value of σ2 

=1.20, is obtained by pooling mean square error 
from previous data. 

The residuals were tested and found normally 
distributed as done in previous section and all other 
regression assumptions were also tested and found 
desirable. 
From equation 2.5, after treating b7 as fixed and β7 as 
random it can be derived that, 

)120.1,17.3(~7 Nβ  
So the posterior distribution f (β7|y) for β7 with no 
reference prior, about regression coefficient β7, included 
after the sample has been observed according to the 
equation (2.6) is given as: 
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Including reference prior about regression 
coefficient β7
The reference prior inequality 0≤ β7 ≤ 4.5 can be  
 

 
expressed in term of prior uniform density function as in  
equation (2.7) is given as: 
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Then the posterior distribution that includes this 
information and the information provided by the sample 
 

must also attach zero probability to the value of β7 
outside the range (0, 4.5) and is given as: 
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Here “N” is refers for normal distribution. But it was 
also observed that probability of β7 lying outside the  

range (0, 4.5) also exists which can be calculated as: 
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This cannot be ignored and needed to truncate the 
posterior distribution given in equation (3.1) with 
reference prior information included about β7. Here 
truncation means shifting the probability (area) greater 

than “4.5” proportionally over the remainder of the 
density function, then the resulting distribution is called 
truncated posterior distribution which is given as: 
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Here “TN” refers to truncated normal distribution. Both normal and truncated normal posterior distribution is shown 
in figure 3.1. 
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As indicated in section-2 that the mean of the truncated 
posterior distribution is the parameter estimate that also 
minimizes expected loss, which is given as: 

∫=
5.4

0
7777 )|()( ββββ dyfE TNTN  

It is very difficult to solve this integral, so we generate 
5,000 observations from posterior distribution fN (β7| y), 
by using )120.1,17.3(~7 Nβ . Observations 
greater than 4.5 were discarded to obtain a random 
sample from truncated posterior distribution fTN (β7|y). 
Now to obtain point estimate of β1, we simply take the 
mean of retained observations from the sample of 5,000 
observations, which becomes i.e. . 
This estimate of β

[ ] 9505.2ˆ
7 =βTNE

7 is lower than the estimate 3.17 
obtained from approach that does not take into account 
the prior information. Also the sample variance from the 
retained observations on β7 which comes out to 
be  is less than 1.069 obtained 
from regression approach that does not take into account 
the prior information. So the introduction of reference 
prior reflects the reduction in dispersion of estimate. In 
other words we can say that precision of the regression 
estimates increases with the introduction of reference 
prior. 

[ ] 8973.0ˆ
7 =βTNarV

 
Simulation results 
The results obtained using original data are verified by 
generating random samples 5000 each from exponential 
(1) and uniform (0, 1) distribution by using procedure 
given in section 2.5. In Table 3.2 it is quite clear that 
estimated effect of pod length from randomly generated 
data from Uniform (0, 1) distribution tends to be very 
close to the original estimated effect as compared to the 
normal (0, 1) and exponential (1). Also standard error of 
the estimate of effect and truncated probability for 
random sample from uniform (0, 1) decreased as 
compared to the other two distributions. 
 
 
 
 
 
 
 
 
 
 
Corresponding author: 
 
Prof. Muhammad F. 
Department of Mathematics and Statistics, Allama Iqbal 
Open University, Islamabad, Pakistan 

 

REFERENCES 
 

DONACHIE A. AND HASWELL SJ. (1999) : Application 
and comparisons of chemometric techniques for 
calibration modeling using electrochemical/ICP-MS 
data for trace elements in UHQ water and humic acid 
matrices. Analytica Chimica Acta. 378(1-3), 235-243. 

FURNIVAL G.M. AND WILSON R.W. (1974) : Regression 
by leaps and bounds. Technometrics. 16, 499-511. 

GEWEKE J. (1986): Exact inference in the inequality 
constrained normal linear regression model. Journal 
of Applied Econometrics, 1, 27-141. 

GRIFFITH E. (1988) :  Bayesian econometrics and how 
to get rid of those wrong signs. Review of Marketing 
and Agricultural Economic. 56, 36-56. 

GRIFFITH W. E., HILL R. C. AND JUDGE G. G. (1988) : 
Learning and practicing Econometrics.  2nd Edition, 
John Wiely and Sons, Inc (New York). 

GULER, M., ADAK, MS, AND ULUKAN, H. (2001). 
Determining relationships among yield and some 
yield components using path coefficient analysis in 
chickpea. European Journal of Agronomy .14(2), 161-
166. 

HOREL A.E., KENNARED R.W. AND BALDWIN K.F. 
(1975) : Ridge regression: some simulations. 
Communication in statistics. 4, 105-123. 

JOHN N., WILLIAM W. AND MICHAL H. K. (1987) :  
Applied linear statistical model. 2nd Edition Toppan 
Comp. Tokyo (Japan). 

MALLOWS C. L. (1973) :  Some comments on Cp. 
Technometrics. 15 661-675. 

WENTZELL P. D. AND ANDREWS D. T. (1999) :  
Estimation of hydrocarbon types in light gas oils and 
diesel fuels by ultraviolet absorption spectroscopy and 
multivariate calibration.  Canadian Journal of 
Chemistry. 77(3), 391-400. 

 
Received for publication on October 3 , 2005 

Accepted for publication on May 31  , 2006

 101



AGRICULTURA TROPICA ET SUBTROPICA                                                                    VOL. 39(2) 2006 
 
 

 102

Tab. 3.1 :  Comparison of different models on randomly generated data 

Results of Original 
Data 

Results of Randomly Generated data from Normal 
Distribution (0, 1) 

Results of Randomly Generated data from 
Exponential Distribution (1) Estmd. 

Coeffs. 
No of 
Obsn 

B.S.R. R. R. P.C.R. S.S.R St.Dev.
(BSR) R.R. St.Dev. 

(RR) P.C.R. St.Dev. 
(PCR) B.S.R. St.Dev.

(BSR) R. R. St.Dev.
(RR) P.C.R. St.Dev.

(PCR)

b0 1000 -9.63 -11.94 -8.89 -9.47 3.60 -11.75 4.75 -12.90 4.83 -9.78 3.54 -11.93 4.94 -12.77 4.68 

b1 1000 -0.04 -0.04 -0.06 -0.04 0.02 -0.04 0.02 -0.02 0.02 -0.04 0.02 -0.04 0.02 -0.02 0.02 

b2 1000 * 0.05 0.00 * * 0.05 0.07 * * * * 0.06 0.08 * * 

b3 1000 * 0.00 -0.02 * * * * -0.02 0.06 * * * * -0.02 0.06 

b4 1000 -0.03 -0.06 -0.01 -0.03 0.02 -0.06 0.04 -0.03 0.06 -0.03 0.02 -0.06 0.04 -0.03 0.06 

b5 1000 -0.09 -0.07 -0.08 -0.09 0.06 -0.06 0.06 0.18 0.06 -0.09 0.06 -0.07 0.06 0.17 0.06 

b6 1000 0.12 0.11 0.09 0.12 0.02 0.11 0.03 0.05 0.03 0.12 0.02 0.11 0.03 0.05 0.03 

b7 1000 3.27 3.22 3.41 3.22 0.91 3.23 1.11 1.66 1.13 3.31 0.90 3.23 1.12 1.61 1.08 

b8 1000 * 0.12 -0.17 * * 0.10 0.63 1.42 0.64 * * 0.12 0.64 1.45 0.62 

b9 1000 * 0.34 -0.06 * * 0.32 0.58 0.21 0.59 * * 0.33 0.57 0.19 0.59 

b10 1000 0.12 0.12 0.17 0.12 0.05 0.12 0.05 0.10 0.06 0.12 0.05 0.12 0.06 0.11 0.06 
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Tab. 3.2 : Summary of results from randomly generated data 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is also clear from Table 3.2 that standard error of estimate with exponential (1) distribution and normal (0, 1) 
distribution data is smaller than Uniform (0, 1) and original data 

Statistics Normal 
distribution 

Exponential(1) 
distribution 

Uniform ( 0, 1 ) 
distribution 

Estimate of β1 and Standard error 
including prior information. 

2.9505 3.0516 3.13 
(0.89737) (0.8289) (0.3079) 

Total generated observations 5,000 5,000 5,000 

Observation from Truncated density 4462 4836 4960 
Discarded Observations 538 164 40 
Estimated Probability P(β1> 4.5) 0.1076 0.0328 0.008 
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